Vaccination in real life

"How to improve the benefits of vaccination among PLWHIV ?"

Nicolas Dauby CHU Saint-Pierre HIV Reference Cen

8th Spring Meeting

Friday May 16th & Saturday May 17th 2025

Some notes from yesterday

Trust needs time

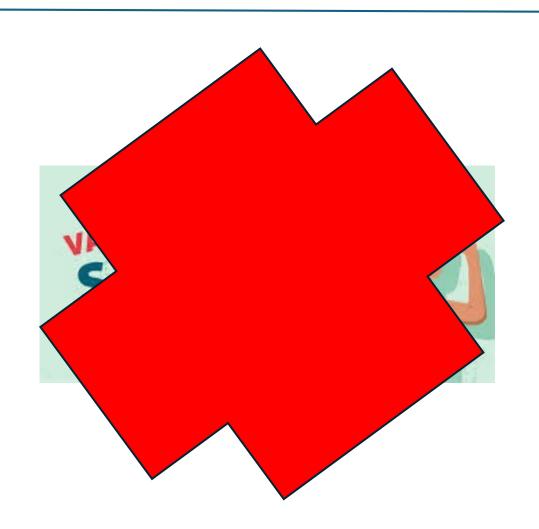
Communication is a keystone to collaborate and to prevent

Listening takes time

- Opportunities
- Consistency

WHEN SOMEONE TELLS ME

THEY ARE NOT UP TO DATE ON RECOMMENDED VACCINES



Vaccines versus vaccination

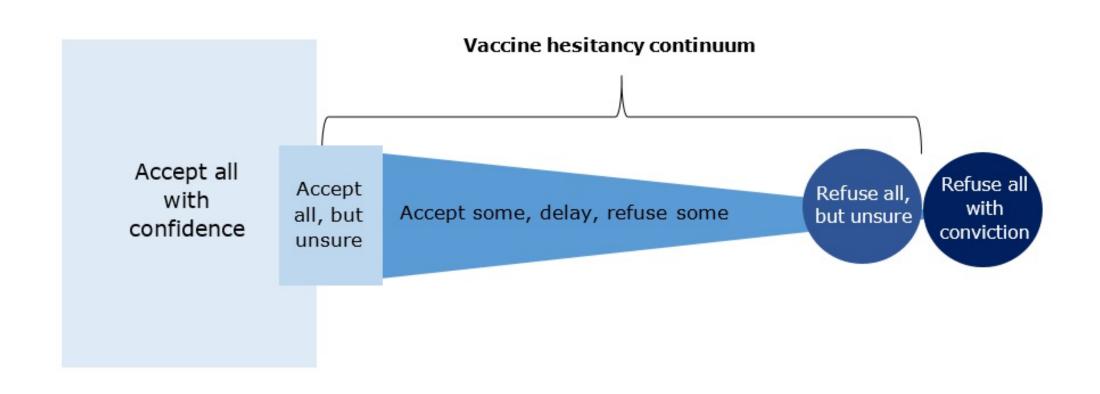
Vaccines versus vaccination

Public Health Nightmare
Vaccines without vaccination
"Thoughts and prayer" for a child deceased
because of measles

On an unusually crisp April day in a rural Texas town, dozens of Mennonite community members gathered alongside the nation's top health official, Robert F Kennedy Jr, to mourn the death of an eight-year-old.

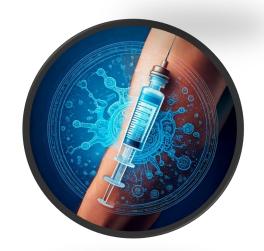
Daisy Hildebrand is the second unvaccinated girl from the community to die from measles in two months.

In one of several Mennonite-owned natural-health stores in Seminole, dozens of bottles of cod liver oil - a supplement that contains vitamin A - are on display. Alongside the vaccine, Kennedy has promoted vitamin A as an alternative measles treatment, a remedy doctors say should not be given without guidance from a physician and is no substitute for the vaccine.

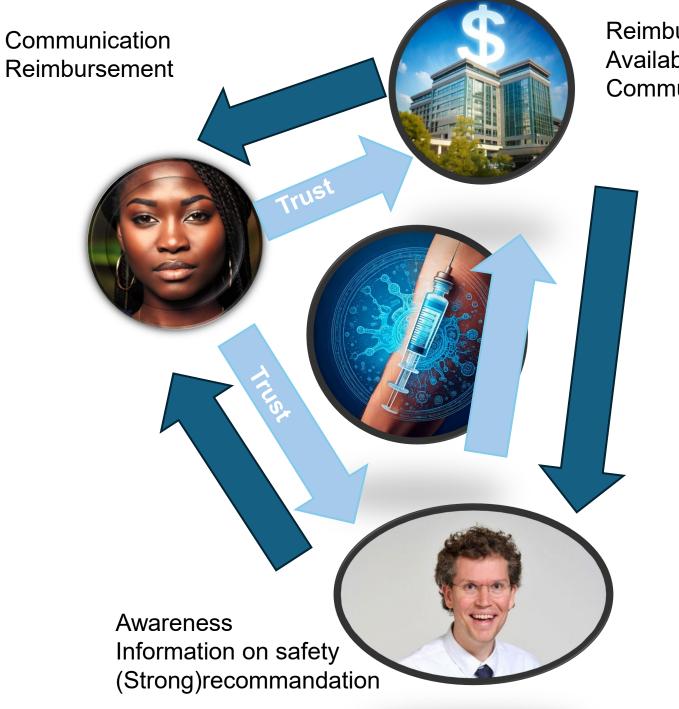

Vitamin A is sometimes used to help treat measles - but should not be given without a physician's guidance

"Vaccine fatigue" in PLWH: impact of the COVID-19 pandemic

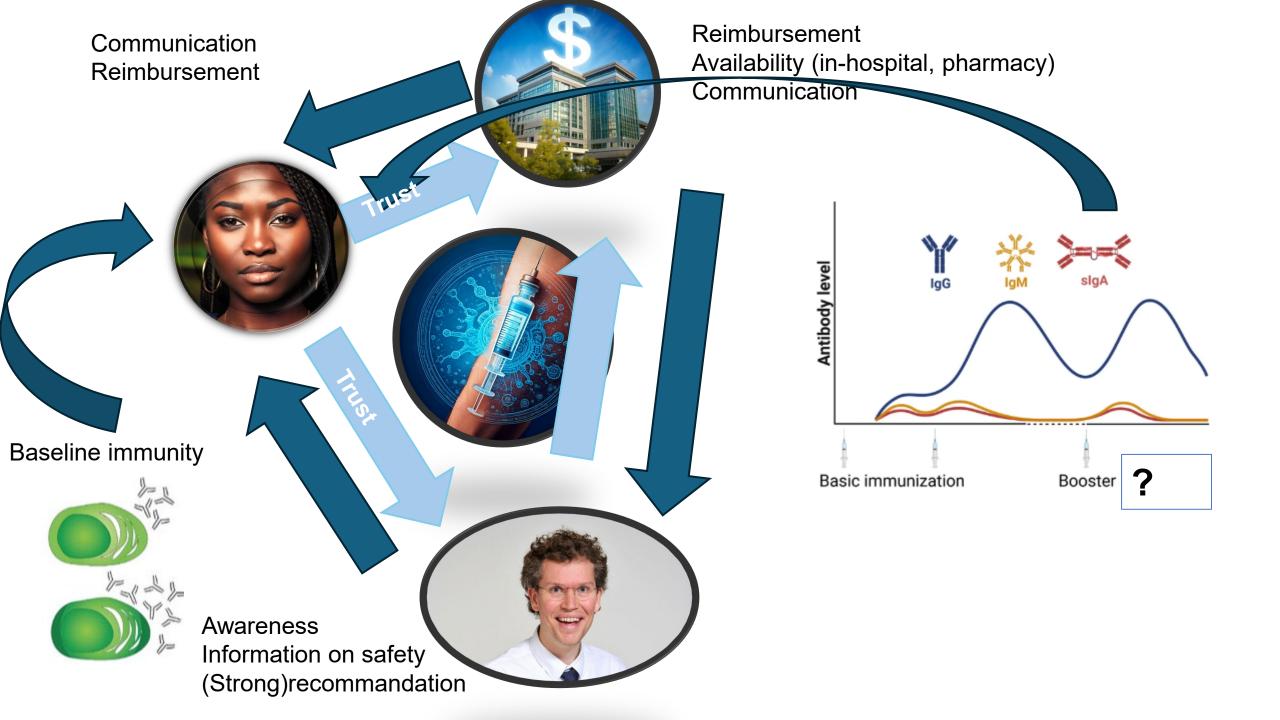
Number of vaccines offered and refused at each visit 195 outpatients with HIV 18 months Pre and Post release of the COVID vaccines

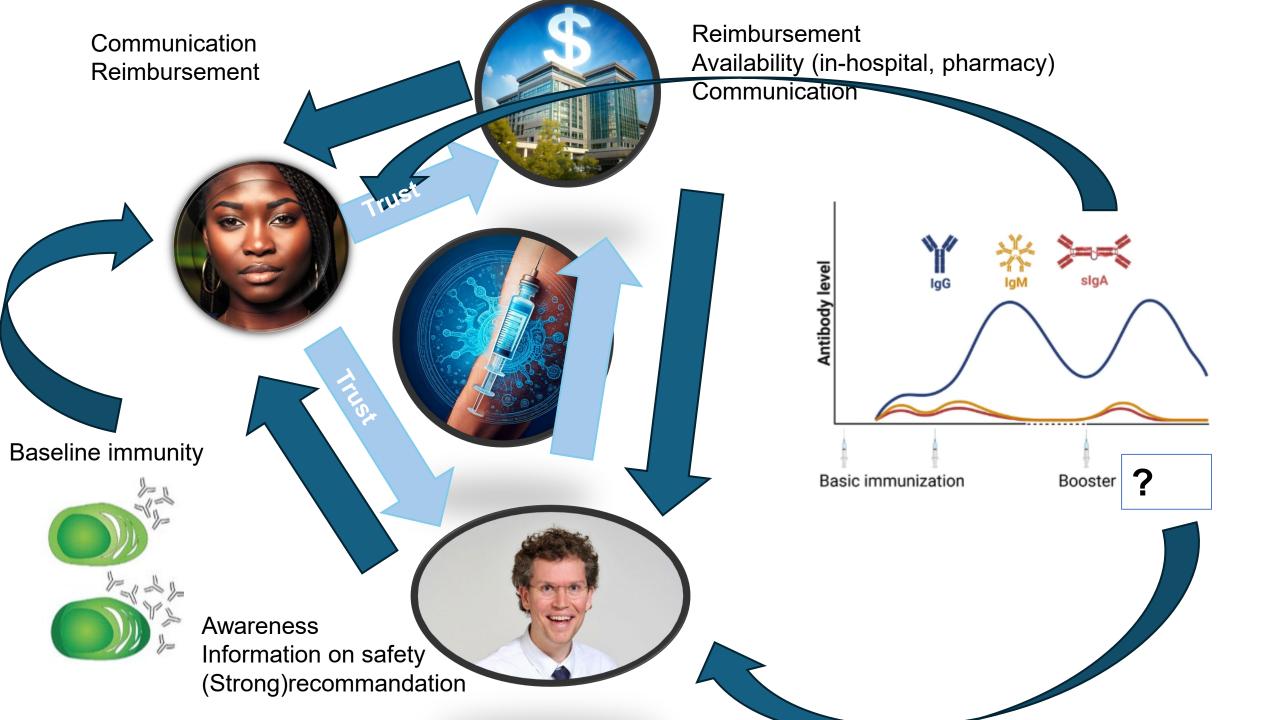

Vaccine	Rank Direction	p value
Pneumonia	More refusals post-Covid	0.026
Influenza	More refusals post-Covid	0.054
Tetanus	More refusals post-Covid	0.263
Hepatitis A	Refusals equal pre-and post-Covid	0.850
Hepatitis B	More refusals post-Covid	0.035
Shingles	More refusals post-Covid	<0.001
All Vaccines	More refusals post-Covid	<0.001

Vaccine hesitant patient : a continuum


The actors

of vaccinatio n





Reimbursement Availability (in-hospital, pharmacy) Communication

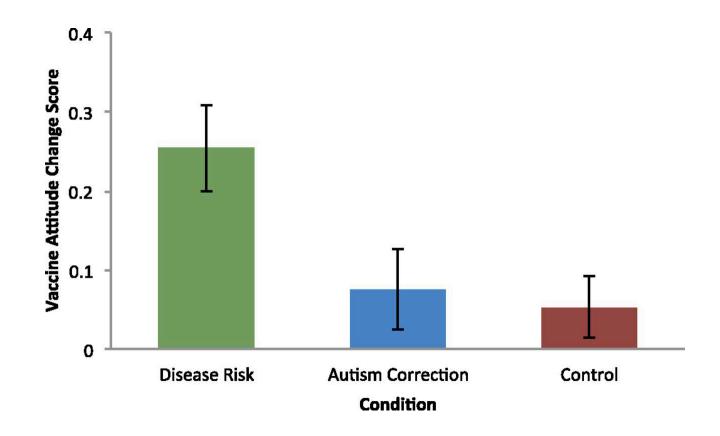


importance of patient's education Awareness of vaccine benefits improves acceptance of flu vaccination

HUMAN VACCINES & IMMUNOTHERAPEUTICS 2022, VOL. 18, NO. 5, e2046434 (7 pages) https://doi.org/10.1080/21645515.2022.2046434

RESEARCH PAPER

Explorative study regarding influenza vaccine hesitancy among HIV-infected patients


Valentina Marchese (b), Samuele Storti, Claudia Morganti, Giorgio Tiecco, Melania Degli Antoni, Emanuele Focà (b), Francesco Castelli, and Eugenia Quiros-Roldan

Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili of Brescia, Brescia, Italy

Table 2. Beliefs in our population, classified per adherence to previous influenza vaccine seasonal campaigns.

	Fully Adherent (n=117, 53.4)	Non- fully adherent (n=102, 46.6)	Total (n=219)	p-value
Protection from severe forms of influenza (n,%)	103 (88)	69 (67.6)	172 (78.5)	<.001
Induction of CD4 T cell increase vaccination-related (n,%)	67 (57.3)	41 (40.2)	108 (49.3)	.015
Effectiveness on COVID-19 disease (n,%)	28 (23.9)	22 (21.6)	50 (22.8)	.7
Fear of the difficulty of SARS-CoV2-influenza differential diagnosis (n,%)	55 (47)	57 (55.9)	112 (51.1)	.2
Recommendation from healthcare professionals (n,%)	66 (56.4)	45 (44.1)	111 (50.7)	.079

about the dangers of communicable diseases can positively impact people's attitudes to vaccination.

Health benefits of maternal immunization are often referred to by women living with HIV

Mixed-methods study, 20 WLWH with a history of pregnancy

Motivation for acceptance of vaccine during pregnancy

Hesitancy was driven by concerns about safety or lack of information.

Most trusted Health care provider: HIV physician

Preventive Medicine Reports

Volume 54, June 2025, 103107

Experience of maternal immunization among women living with HIV in Belgium: A mixed-methods study *

Yama Touré ^a, Charlotte Martin ^a, Coca Necsoi ^a, Marc Delforge ^a, Déborah Konopnicki ^a, Nicolas Dauby ^{a b} △ ⊠

"Immunization protects the mother and the baby." Age 37-Gabon

"To help your pregnancy run successfully." Age 41-Cameroon

"If it could help me and the baby." Age 49-Zambia


"To protect the baby and the mom" Age 38-Cameroun

"To protect the child and myself, all mothers do that" Age 34-Guinea

"Probably needed following medical advice" Age 47-Cameroun

"Protect myself and the baby too" -Democratic Republic of the Congoo

Importance of global vaccine confidence Results from a survey about zoster vaccine acceptance,

CHU Saint-Pierre (2022-2023)

	Agree	Do not agree/do not know	OR	95%CI
	n=201	n=126		
Mean age (years)	48.3	50.1		
Male	160 (79.6)	79 (62.7)		
Education level				
- Graduate studies	116/198 (58.6)	55/124 (44.4)		
- Secondary/primary school or unschooled	82/198 (41.4)	69/124 (55.6)		
Ethnicity				
- Sub-Saharan African	55 (27.4)	46/124 (37.1)		
- Non Sub-Saharan African	146 (72.6)	78/124 (62.9)		
MSM	120/145 (82.8)	53/66 (80.3)		
Underlying chronic disease	54/199 (27.1)	23/124 (18.5)		
Personal history of varicella	125 (62.2)	70 (55.6)		
Personal history of herpes zoster	57/193 (29.5)	23/122 (18.9)		
Patients who know what herpes zoster is	135/199 (67.8)	70/121 (57.9)		
People who know a relative with a history of herpes zoster	73/166 (44.0)	36/103 (35.0)		
People who know herpes zoster vaccine	29 (14.4)	13 (10.3)		
People who think vaccination is a good prevention tool against herpes zoster	73/193 (37.8)	54/120 (45.0)		
People who are in favour of vaccination	173/102 (00.1)	62/113 (54.0)		
People who agree to be vaccinated (any vaccine)	176/193 (91.2)	22/119 (18.5)	57.7	19.9-167.6
People who are vaccinated against COVID-19	189/195 (96.9)	98/121 (81.0)		

OR: odds ratio, CI: confidence interval, MSM: men having sex with men

Predictors of general vaccination acceptance among PLWHIV, CHU Saint-Pierre (2022-2023)

Table 3. Predictors of vaccination acceptance – studied variables and results from multivariate analysis

		Favors vaccination	Against vaccination/do	OR	95%CI	
			not know			
		n=235	n=70			
	Age (mean)	49.1	49.0			
\	Male	187 (79.6)	39 (55.7)			
→	Sub-Saharan African	59/234 (25.2)	31/69 (44.9)			
	MSM	141/170 (82.9)	27/32 (84.4)			
	Graduate studies	139/231 (60.2)	29/69 (42.0)			
	Underlying chronic disease	55/232 (23.7)	18 (25.7)			
	People who think vaccination is a good prevention tool against infectious diseases	222 (94.5)	39 (55.7)	10.4	4.8-22.6	
	vaccinated against COVID-19	222/234 (94.9)	54 (77.1)			

OR: odds ratio, CI: confidence interval, MSM: men having sex with men

A message tailored to the patient's background Higher risk of tetanus seronegativity among PLWH with lower educational background, CHU

Saint-Pierre 2018-2019 Risk Factors for Tetanus seronegativity among 344 subjects living with HIV.

Characteristics	ATA< 0.15 UI/mL n/total (%) OR (IC 95)		p-value (Fisher test)	AOR (IC 95)	p-value
Age					_
- <50 years old	26/203 (12.8)	0.65	0.17		
- > 50 years old	26/141 (18.4)	[0.34- 1.23]			
Sex					
- Male	25/232 (10.8)	0.38	0.002	1.67	0.14
- Female	27/112 (24.1)	(0.12-0.73)		(0.84-3.29)	
Recent pregnancy (<5 years)					
- < 5 years	1/15 (6.7)	0.20	0.11		
No recent pregnancy	26/97 (26.80)	[0.004- 1.42]			
Birthplace					
- Europe	13/164 (7.9)	3.20	0.0004	3.02	0.007
- Outside Europe	39/180 (21.7)	(1.59-6.82)		(1.35-6.76)	
Arrival date in Belgium for non-Europeans					
- < 5 years					
- > 5 years	5/29 (17.2)34/151 (22.5)	1.39(0.47-5.02)	0.63		
Level of education					
- No university	37/183 (20.2)	0.41	0.006	2.35	0.02
- University	15/161 (9.3)	(0.20-0.80)		(1.14-4.85)	
Health Insurance Coverage					
Van					
- Yes	45/313 (14.4)	0.58	0.29		

Sociodemographic and socioeconomic disparities in COVID-19 vaccine uptake in Belgium: a nationwide record linkage study

Lisa Cavillot , ^{1,2} Joris A F van Loenhout, ¹ Brecht Devleesschauwer, ^{1,3}

Chloé Wyndham-Thomas, ¹ Herman ¹ Laura Van den Borre, ^{1,5} Matthieu Bil Veerle Stouten, ¹ Lucy Catteau, ¹ Pier

Table 2 Adjusted odds ratios (ORs) and their 95% confidence intervals (CIs) for the association between sociodemographic and socioeconomic characteristics and the odds of not having received a first dose of COVID-19 vaccine, Belgium, 28 December 2020 to 31 August 2021

WHAT THIS STUDY ADDS

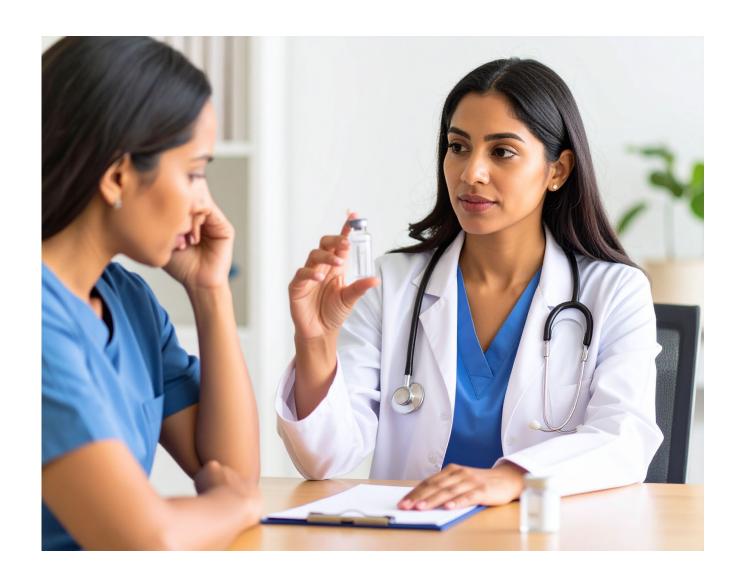
⇒ Thanks to a unique individual data linkage allowing the use of a large and representative study population (N=5 342 110), a significant lower COVID-19 vaccination coverage was identified among socioeconomically disadvantaged groups in Belgium and within each Belgian region.

Variables	Model 1*	Model 2†	Model 3‡
	Adjusted OR (95% CI)	Adjusted OR (95% CI)	Adjusted OR (95% CI)
Age groups			
18-24	4.78 (4.66 - 4.89)	-	-
25-34	5.49 (5.37 - 5.62)	5.98 (5.84 - 6.12)	2.75 (2.71 – 2.78)
35-44	3.89 (3.80 - 3.99)	4.22 (4.12 – 4.32)	1.97 (1.94 – 1.99)
45–54	2.67 (2.60 – 2.73)	2.83 (2.76 – 2.90)	1.34 (1.32 – 1.36)
55-64	2.15 (2.10 – 2.21)	2.23 (2.18 – 2.29)	1.00
65-74	1.43 (1.40 – 1.47)	1.47 (1.43 – 1.51)	-
75–84	1.00	1.00	-
85+	1.19 (1.14 – 1.23)	1.15 (1.11 – 1.20)	-
Sex			
Women	1.00	1.00	1.00
Men	1.05 (1.04 – 1.06)	0.99 (0.98 - 1.00)	1.07 (1.06 – 1.07)
Regions			
Flemish	1.00	1.00	1.00
Brussels	1.80 (1.78 – 1.81)	1.76 (1.74 – 1.78)	1.77 (1.75 – 1.78)
Walloon	1.63 (1.62 – 1.64)	1.67 (1.66 – 1.68)	1.67 (1.66 – 1.68)
Migration background			
Belgian natives	1.00	1.00	1.00
Second-generation migrants	2.25 (2.23 – 2.28)	1.94 (1.91 – 1.96)	2.12 (2.09 – 2.15)
First-generation European migrants	2.90 (2.88 – 2.93)	2.64 (2.62 – 2.67)	3.10 (3.07 – 3.13)
First-generation non-European migrants	2.98 (2.95 – 3.00)	2.76 (2.73 – 2.78)	3.45 (3.42 – 3.48)

Original research

Sociodemographic and socioeconomic disparities in COVID-19 vaccine uptake in Belgium: a nationwide record linkage study

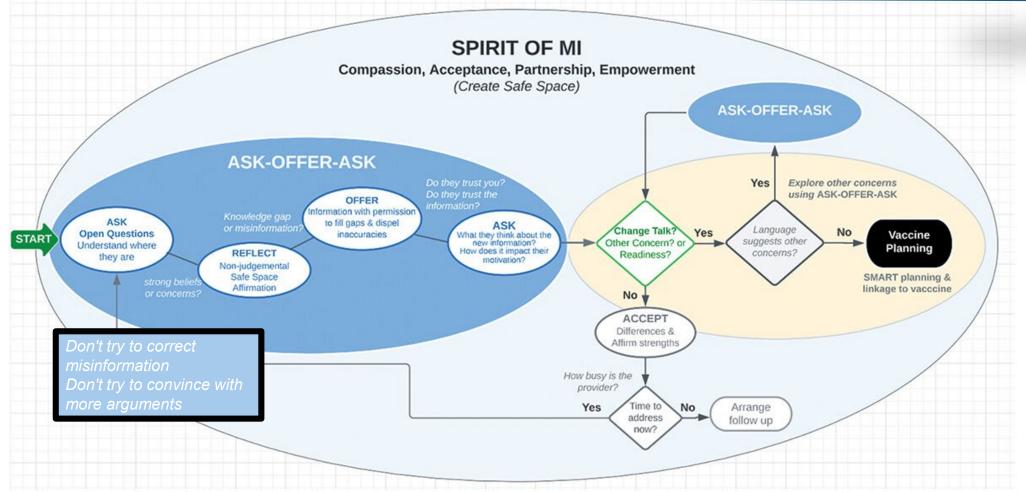
Lisa Cavillot , ^{1,2} Joris A F van Loenhout, ¹ Brecht Devleesschauwer, ^{1,3} Chloé Wyndham-Thomas, ¹ Herman Van Oyen, ^{1,4} Jinane Ghattas, ^{1,2} Koen Blot, ¹ Laura Van den Borre, ^{1,5} Matthieu Billuart, ¹ Niko Speybroeck, ² Robby De Pauw, ^{1,6} Veerle Stouten, ¹ Lucy Catteau, ¹ Pierre Hubin ¹


WHAT THIS STUDY ADDS

each Belgian region.

⇒ Thanks to a unique individual data linkage allowing the use of a large and repressively population (N=5 342 110), a signormal lower COVID-19 vaccination coverage was identified among socioeconomical disadvantaged groups in Belgium and

Income			
High	1.00	1.00	-
Moderate	1.54 (1.52 – 1.55)	1.44 (1.43 – 1.46)	-
Low	2.36 (2.34 – 2.38)	2.08 (2.06 – 2.10)	-
Missing	1.93 (1.89 – 1.96)	1.68 (1.65 – 1.71)	-
Education level			
High	-	1.00	-
Moderate	-	1.31 (1.30 – 1.32)	-
Low	-	1.37 (1.36 – 1.39)	-
Missing	-	1.19 (1.18 – 1.21)	-
Healthcare degree			


Healthcare degree			
Yes	-	1.00	-
No	-	1.41 (1.39 – 1.43)	-
Employment status			
Employed	-	-	1.00
Unemployed	-	-	1.46 (1.45 – 1.47)
Missing	-	-	1.16 (1.13 – 1.18)

Motivational interview
An evidence-based strategy for vaccine counceling

A patient is reluctant to be vaccinated against shingles. He is living with HIV and is 70 years old. He also suffers from diabetes. How would you convince him to be vaccinated using a motivational interview strategy?

Using a motivational interviewing approach to encourage the patient to get the shingles vaccine involves empathetic communication, exploring his concerns, and highlighting the benefits. Here's an example of how you might approach it:

1. Build rapport and express understanding:

"I understand that making decisions about vaccines can be complex, especially given your health conditions. It's completely normal to have questions or concerns."

2. Explore his perspective:

"Can you tell me what you know or feel about the shingles vaccine? Are there specific worries or reasons you're hesitant?"

3. Reflect and validate feelings:

"It sounds like you're concerned about how the vaccine might affect your health, especially with HIV and diabetes."

4. Provide tailored information and clarify misconceptions:

"The shingles vaccine is generally safe for people with HIV and for those your age. It can actually help prevent a painful condition called shingles, which you might be at increased risk for given your age and health conditions."

5. Emphasize the benefits and address risks:

"Getting vaccinated could significantly reduce your chances of experiencing severe shingles, which can cause lasting pain and complications. Considering your HIV status and diabetes, protecting yourself from additional illnesses is especially important."

6. Support autonomy and decision-making:

"Ultimately, the decision is yours, and I'm here to support whatever choice you make. Would it help to discuss any other concerns or questions you have?"

Differential vaccine coverage among

PLWH in France and Greece: an impact

of vaccine availability?

Hepatitis A

Hepatitis B

Influenza

Costs

outpatient clinic :experience with MIA center - CHU Saint-Pierre

15 Vaccines available on site:

- Hepatitis A / B (Engerix ® & Fendrix ® ; Twinrix ®)
- PCV20
- Shingrix ®
- Gardasil 9 ®
- Influenza during season
- Imovax Polio (travellers)
- Jynneos ®
- Nimenrix ®
- Pneumovax 23 ®
- Priorix ® (MMR)
- Stamaril ®

Vaccination may be performed directly after the HIV physician's visit

Shingrix ® coverage among people living with HIV, CHU Saint-Pierre, 2022-2025

At least one dose of Shingrix ®

- 378/4109 patients (9.2%)
- Median age 61.8 (IQR 55-67)

Among 50+:

- 329/2030 (16,2%)

Among 60+

- 227/986 (23%)

Shingrix ® coverage among people living with HIV, CHU Saint-Diarra 2022-2025

At le


- 378

- Me

Amo

- 329

Amo - 227

The standards for adult immunization practice

• **ASSESS** immunization status of all patients in every clinical encounter

RECOMMEND strongly the vaccines that patients need

 ADMINISTER needed vaccines or REFER to a provider who can immunize, and

DOCUMENT vaccines administered or received by patients.

A 2-doses schedule with Gardasil is non-inferior to a 3 doses schedule with less reactogenicity

JOURNAL ARTICLE ACCEPTED MANUSCRIPT

Immunogenicity and safety of two versus three doses of 9-valent vaccine against Human papillomavirus (HPV) in women with HIV: the Papillon randomized trial Get access >

Deborah Konopnicki ▼, Christine Gilles, Yannick Manigart, Patricia Barlow,
Anca Reschner, Coca Necsoi, Marc Delforge, Davy Vanden Broeck, Nicolas Dauby,
Stéphane De Wit

Clinical Infectious Diseases, ciaf241, https://doi.org/10.1093/cid/ciaf241

Published: 13 May 2025 Article history ▼

Abstract

Background

WHO recommends 2 doses of HPV vaccine for adults without HIV but 3 doses in persons with HIV. There are no immunogenicity data on the 2 doses schedule in women with HIV (WWH).

Results

Median age was 35 years, median CD4 count $649/\mu L$, 16 missed M7 visit. In mITT, seroconversion was 97.7% for 2 doses and 97.9% for 3 doses, meeting the predefined non-inferiority criteria. At M7, antibodies titers against all vaccine genotypes were high in both groups (increase by 1.2-2.4 \log_{10}). There was no serious adverse event; participants with 3 doses experienced local reaction more frequently (82% versus 60% for 2 doses, p=0.027) with significantly more symptoms and longer duration.

Conclusions

In women with well-controlled HIV, 2 doses of HPV 9v-vaccine is non-inferior to 3 doses in terms of seroconversion and is associated with less reactogenicity.

Importance of a second dose of yellow fever vaccine for long term protection among PLWHIV

D	Number of seroprotcted vaccinees	Total number of vaccinees						Seroprotection rate, % (95% CI)	Weight (common)	Weight (random)
Avelino-Silva et al (2016) ³⁵	5	10						50% (19–81)	9.1%	15.6%
Veit et al (2018) ³³	47	63			+	•		75% (62–85)	54.7%	38.9%
Veit et al (2009) ³⁴	5	10						50% (19-81)	9.1%	15.6%
Martin et al (2022) ⁶²	16	31			- ; ;			52% (33-70)	27.2%	29.9%
Common-effect model		114						65% (55-74)	100.0%	••
Random-effects model								61% (38-82)	••	100.0%
Heterogeneity: I^2 =56%, τ^2 =0	$0.0094, \chi_3^2 = 6.83 (p = 0.078)$	0 Pro	20	40	60 ted 10 or n	80	100			
		ric	•	•	ccination	nore year	5			

Pooled seroprotection rate 61% (38-82) at 10 years A second dose of yellow fever vaccine is recommended for PLWHIV (Superior Health Council advice)

Vaccination in real life How to improve the benefits of vaccination among PLWHIV ?

- Proactive and recurrent communication, strong recommendation and transparency about the benefits (and the risk) of vaccination is key to increase acceptance
 - Tailored to the specificity of the patient (education, cultural background)
- Motivational interview is an evidence-based approach
- Availability of vaccines at the outpatient clinic is probably key for an optimal uptake (along with reimbursement)
 - Continue the lobby for the reimbursement of different vaccines

 More data are required on the need or not of additional doses in (subgroups) of PLWHIV