

Towards a Cure of HIV infection: to shock or to lock, that is the question.

Zeger Debyser MD PhD KU Leuven

*Mzingwane ML et al., Rev Med Virol., 2017.

How can we cure HIV infection?

Regulation of transcriptional activity

HIV 5' LTR

Translational evidence for a block-and-lock cure

Elite controllers

- → HIV infected patients who control viral replication without ART
- \rightarrow 0.5 % of HIV population

Post-treatment controllers

- → Long-term ART treated individuals who control viral replication after treatment-interruption
- \rightarrow 7 % of HIV population

*Jiang *et al.*, *Nature*, 2020. *Einkauf *et al.*, *J Clin Invest*, 2019.

Translational evidence for a block-and-lock cure

*Lian et al., Cell Host Microb, 2022.

nature

News & views

Virology

Deep-sleeping HIV genomes under control

Nicolas Chomont

In a few people living with HIV, the virus remains under control without antiretroviral therapy. It emerges that, in these people, the viral DNA that is integrated into the host genome is in a deeply transcriptionally repressed state. **See p.261**

- Integration site and RNA expression
- Selection
 - Immune control
 - Toxicity
 - Clonal expansion

Article

Distinct viral reservoirs in individuals with spontaneous control of HIV-1

https://doi.org/10.1038/s41586-020-2651-8	Chenyang Jiang ^{1,215} , Xiaodong Lian ^{1,2,15} , Ce Gao ¹¹⁵ , Xiaoming Sun ¹ , Kevin B. Einkauf ^{1,2} ,		
Received: 2 October 2019	Joshua M. Chevalier ¹² , Samantha M. Y. Chen ¹ , Stephane Hua ¹ , Ben Rhee ¹² , Kaylee Chang ¹ , Jane F. Blackmer ¹ , Matthew Oshorn ¹ , Michael J. Peluso ² , Rebecca Hoh ² , Ma Somsouk ² ,		
Accepted: 15 July 2020	Jeffrey Milush ¹ , Lynn N. Bertagnolli ⁴ , Sarah E. Sweet ⁴ , Joseph A. Varriale ⁴ , Peter D. Burbelo ⁵ ,		
Published online: 26 August 2020	Tae-Wook Chun ⁶ , Gregory M. Laird ⁷ , Erik Serrao ⁶⁹ , Alan N. Engelman ⁶⁹ , Mary Carrington ¹⁰⁰ , Robert F. Siliciano ⁴⁰ , Janet M. Siliciano ⁴⁰ , Steven G. Deeks ³ , Bruce D. Walker ¹⁰¹⁰³⁰ .		
Check for updates	Mathias Lichterfeld ^{12,14} & Xu G. Yu ¹² 11		

Block-and-lock approaches

• Tat Inhibition by Didehydro-Cortistatin A

Kessing, C.F et al. In vivo suppression of HIV rebound by didehydro-Cortistatin A, a 'block-and-lock' strategy for HIV-1 cure. Cell Rep. **2017**, 21, 600–611

LEDGINs retarget integration

Vranckx L.S. et al. LEDGIN-mediated inhibition of integrase-LEDGF/p75 interaction reduces reactivation of residual provirus. EBioMedicine. **2016** Jun;8:248-264.

KU LEUVEN

- FACT Inhibition by Curaxin CBL0100
- RNA-Induced Epigenetic Silencing
- HSP90 Inhibitors
- Jak-STAT Inhibitors
- BRD4 Modulators
- mTOR Inhibitors
- Kinase Inhibitors
- Triptolide

For a review See Vansant et al Viruses 2020

Lens Epithelium-Derived Growth Factor

- Cellular stress response
- Transcriptional co-activator (Ge et al., EMBO J. 1998)

KU LEUVEN

Van Maele et al., TiBS 31, 98-105, 2006

A molecular tether for the HIV PIC

Interaction of LEDGF/p75 and HIV-IN

IBD: integrase binding domainCCD: catalytic core domain

KU LEUVEN

Cherepanov et al., PNAS, 102, 17308-17313, 2005

LEDGINs as novel first-in-class noncatalytic integrase inhibitors (2010)

ARTICLE PUBLISHED ONLINE: 16 MAY 2010 | DOI: 10.1038/NCHEMBIO.370 nature chemical biology

Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication

Frauke Christ^{1,7}, Arnout Voet^{2,7}, Arnaud Marchand^{5,7}, Stefan Nicolet^{3,6}, Belete A Desimmie¹, Damien Marchand⁵, Dorothée Bardiot⁵, Nam Joo Van der Veken¹, Barbara Van Remoortel¹, Sergei V Strelkov³, Marc De Maeyer², Patrick Chaltin^{4,5} & Zeger Debyser^{1*}

Lens epithelium-derived growth factor (LEDGF/p75) is a cellular cofactor of HIV-1 integrase that promotes viral integration by tethering the prelintegration complex to the chromatin. By virtue of its crucial role in the early steps of HIV replication, the interaction between LEDGF/p75 and integrase represents an attractive target for antiviral therapy. We have rationally designed a series of 2-(quinolin-3-yi)acetic acid derivatives (LEDGINs) that act as potent inhibitors of the LEDGF/p75-integrase interaction and HIV-1 replication at submicromolar concentration by blocking the integration step. A 1.84-Å resolution crystal structure corroborates the binding of the inhibitor in the LEDGF/p75-binding pocket of Integrase. Together with the lack of cross-resistance with two clinical integrase inhibitors, these findings define the 2-(quinolin-3-yi)acetic acid derivatives as the first genuine allosteric HIV-1 integrase inhibitors. Our work demonstrates the feasibility of rational design of small molecules inhibiting the protein-protein interaction between a viral protein and a cellular host factor.

CX04328 binds into a small molecule binding pocket in the dimer interface different from the strand transfer inhibitor binding pocket. CX04328 does not alter the overall shape of the IN structure and competes with LEDGF (gray) for the binding to integrase.

KU LEUVEN

Christ et al., Nature Chemical Biology, 6(6):442-8, 2010.

LEDGF/p75

→ LEDGF/p75 directs integration to body of active transcription units

\rightarrow LEDGF/p75 depletion shifts integration out of TUs

Eidahl *et al.* Nucleic Acids Res., 2013; Ciuffi *et al.* Nat. Med., 2005; Shun *et al.* Genes Dev., 2007; Schrijvers *et al.* PLoS Pathog., 2012; Fadel *et al.* J Virol., 2014)

KU LEUVEN

GPS

LEDGINs as tool to study this hypothesis

- 1. Inhibition of the LEDGF/p75-IN interaction (Christ *et al.* Nat. Chem. Biol., 2010)
- 2. Allosteric IN inhibition (EARLY) (Christ *et al.* AAC, 2012; Kessl *et al.* J. Biol. Chem., 2012; Tsiang *et al.* J. Biol. Chem., 2012)
- 3. Dysfunctional IN multimerisation/assembly (LATE) (Jurado *et al.* PNAS, 2013 ; Desimmie *et al.* Retrovirol., 2013; Balakrishnan *et al.*,

PLoS ONE 2013)

4. Retargeting integration + block and lock (EARLY/LATE) (Vranckx et al. EBiomedecine 2016)

Dose-response

How does inhibition with the integrase-LEDGF/p75 interaction interfere with the lentiviral integration process?

KU LEUVEN

What is the impact of LEDGINs on:

- 1. Integration site distribution?
- 2. Establishment of HIV latency?
- 3. Reactivation from HIV latency?

1. LEDGINs (CX014442) shift HIV integration out of TUs

(SupT1)

HIV Double reporter virus

2. LEDGIN treatment during infection increases the quiescent fraction

3. LEDGIN treatment induces a residual silent reservoir refractory to HIV reactivation

LEDGINs

Dose-dependent reduction in reactivation from quiescence

SupT1, 11D p.i. TNFalpha -DMSO

Conclusion : LEDGINs as a potential CURE strategy

LEDGINs function as potent ANTI-RETROVIRALS

With **RESIDUAL** integrated provirus:

- Shifted out of transcription units
- Shifted towards the inner nucleus
- Transcriptionally silent
- Refractory to reactivation from latency

The chromatin landscape at the HIV-1 integration site determines viral expression

The chromatin landscape at the HIV-1 provirus integration site determines viral expression (barcoded viruses) Gerlinde Vansant, Heng-Chang Chen, Eduard Zorita, Katerina Trejbalová, Dalibor Miklík, Guillaume Filion, Zeger Debyser *Nucleic Acids Research*, Volume 48, Issue 14, 2020, Pages 7801–7817,

The molecular mechanism underlying LEDGIN block and lock

Advantage

- Measure integration sites
- LinkRNA transcription to individual integration site and its epigenetic features

Advantage

- Image RNA transcription per DNA copy
- Image location of DNA copy in the nucleus

AMPLIFIER 1

DOUBLE Z probe

LEDGINs reduce RNA expression

Reduction in RNA expression per chromosome

After LEDGIN treatment no-expressors are further away from H3K36me3 (LEDGF mark)

Distance to H3K27Ac affects RNA transcription independently from LEDGF/p75

Both LEDGF/p75 and super-enhancers determine transcription levels of HIV provirus

Transcriptionally active

The chromatin landscape at the HIV-1 integration site determines viral expression

Single-Cell Imaging Shows That the Transcriptional State of the HIV-1 Provirus and Its Reactivation Potential Depend on the Integration Site. Janssens, J., De Wit, F., Parveen, N., Debyser, Z. *MBIO 2022*.

Study the effect of LEDGINs in single cells with bDNA imaging

- Fluorescent in situ hybridization (FISH)
- Simultaneous labelling of viral DNA and vRNA in single cells

routine

HIV DNA (vDNA) spots per cell measure of integrated HIV

CX014442 concentration (µM)

Ral concentration (nM)

2. LEDGINs reduce HIV-1 integration and viral RNA expression

HIV RNA (vRNA) spots per cell to measure HIV transcription (non-activated) and reactivation (TNFalpha)

3. LEDGINs reduce HIV-1 reactivation

HIV RNA (vRNA) spots per cell to measure HIV transcription (non-activated) and reactivation (TNFalpha)

Molecular Virology and Gene Therapy

4. LEDGINs reduce viral RNA expression and reactivation in primary cells

TOWARDS A FUNCTIONAL CURE OF HIV-1 INFECTION: BRD4 MODULATOR ZL0580 AND LEDGINS ADDITIVELY BLOCK AND LOCK HIV-1 TRANSCRIPTION

Eline Pellaers, Julie Janssens, Lore Wils, Alexe Denis, Feng Da, Frauke Christ, Zhang Peng and Zeger Debyser

5. Enhanced block-and-lock

ns

ns

ns

**

ns

ns

ns

Role of BRD4 in transcriptional regulation of HIV-1

* Niu, Q. *et al.*, *J. Clin. Invest.*, 2019.

Role of enhancers

→LEDGINs don't influence proximity of integration sites to enhancers (Vansant et al., Nucleic Acids Res., 2022.)

→HIV transcription is stimulated by integration in proximity to enhancers (Chen et al. Nat. Struct. Mol. Biol., 2017.)

Residual high vRNA expression after LEDGIN-treatment due to enhancers

"Vansant et al., Nucleic Acids Res, 2020.

Block-and-lock phenotype

ZL0580 and LEDGINs have an additive effect in promoting latency

<-10: *antagonistic*; -10 to 10: *additive* >10: *synergistic*

*Results generated with Combenefit

*Veroli G., et al., Bioinformatics, (2016).

7. Towards the clinic

The block-and-lock phenotype in HIV patients

- Positive selection of proviruses with lower transcriptional activity in patients on prolonged ART (Einkauf et al. 2019, 2022)
- In elite controllers, HIV is integrated in regions associated with deep latency → block-and-lock (Jiang et al. Nature, 2020)

LEDGINs as part of ART to accelerate the natural block-and-lock phenotype that occurs in elite controllers and prolonged ART

KU LEUVEN

Molecular Virology and Gene Therapy

LEDGIN GS-9822 reduces viral RNA expression and reactivation at nanomolar range

Effect on basal transcription (unactivated cells)

GS-9822 (nM)	$total_{vDNA}$	$total_{vRNA}$	vRNA per copy
0 (control)	29	409	14.1
22.8	15	167	11.1
45.9	5	105	21.0
91.4	4	7	1.75

Effect on reactivation (10 ng/ml TNF-alpha)

GS-9822 (nM)	total _{vDNA}	total _{vRNA}	vRNA per cop
0 (control)	14	1422	101.6
22.8	12	547	45.6
45.9	8	342	42.8
91.4	3	62	20.7

Bruggemans A, Vansant G, Balakrishnan M, Mitchell ML, Cai R, Christ F, Debyser Z. Antimicrob Agents Chemother. 2023 May

LEDGIN-induced selection of deep latent provirus

- Selection of integrated copies over time
- Dose-dependent effect after LEDGIN treatment
- Positive selection of proviruses with lower transcriptional activity in patients at specific genomic locations (Einkauf et al. 2019, 2022)

Selection of LEDGINretargeted but deep latent provirus

Towards clinical cure trials

- Time line
 - 2003: LEDGF/p75
 - o 2010: LEDGINs
 - 2016: block-and-lock
 - Clinical trial?

- How to test?
 - First as antiviral
 - Measure integration sites, QVOA...
 - For cure (remission):
 - Prep
 - Acute infection
 - First line treatment
 - Chronic infection:
 treatment interruption??

Take home message

- Let a thousand flowers bloom in HIV cure research
- Block-and-lock represents an alternative approach
- that is supported by clinical evidence (the block-and-lock phenotype)
- Goal is to accelerate the natural block-and-lock mechanism
- Clinical trials should provide proof-of-evidence
- Research on
 - Enhanced block-and-lock (combinations)
 - Block-and-shock or shock-and-block

MOLECULAR VIROLOGY & GENE THERAPY LEUVEN VIRAL VECTOR CORE – LVVC

Laboratory of Molecular Virology and Gene Therapy, KU Leuven

Julie Janssens Eline Pellaers Wout Hannes Paulien Vandevelde Barbara Van Remoortel Anayat Bhat Frauke Christ

Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Catalunya, Spain. Heng-Chang Chen, Guillaume Filion,

Gilead Sciences Mini Balakrishnan, Michael L. Mitchell, Ruby Cai

Gladstone Institute of Virology and Immunology, San Francisco Emilie Battivelli, Eric Verdin