In-depth single-cell analysis of translationcompetent HIV-1 reservoirs identifies cellular sources of plasma viremia

Basiel Cole

Introduction

- HIV-1 infection remains incurable
 - Persistent viral reservoir
- Translation-competent reservoir
 - Infected cells that harbor a provirus that is capable of producing viral proteins
- Clinically relevant component of the reservoir

How can we study this reservoir?

STIP-Seq assay

<u>Simultaneous TCR, Integration site and Provirus sequencing</u>

HIV Cure Research Center

STIP-Seq on 8 cART-suppressed individuals

- 40 distinct proviral genomes ٠
- 9 integrated in cancer-related gene ٠
- Genome intact: 5/40 (12.5%) ٠
- Large internal deletion: 1/40 (2.5%) ٠
- Packaging signal (PSI) and/or ٠ major splice donor (MSD) defect: 34/40 (85%)

STIP-Seq on 8 cART-suppressed individuals

- TCRβ sequencing revealed infected clones with predicted pathogen-specificity (CMV, *M. tuberculosis*, Influenza)
- Integration site in gene involved in proliferation (e.g. *STAT5B*)

HIV Cure

Research Center

Potential synergy between antigen- and integration site-driven mechanisms

incomplete

Predicted TCR specificity

M. tuberculosis Influenza Multiple (*M. tuberculosis*, Influenza, CMV) Unknown

STIP-Seq in the context of an analytical treatment interruption (ATI)

VMP1

P6

- Match between defective provirus and T4 rebound virus
- Part of p17 deleted

- Match between defective provirus and T1 virus: 5bp deletion in MSD.
- Match between intact provirus and T1 virus

 Match between intact provirus and T1-T2-T3 virus

P8

NFL class	Assay	Plasma
Intact	●■ STIP-Seq at T1/T2	🔺 SGS at T1
Defective	🔵 📕 MIP-Seq at T1	🔺 SGS at T2
	FLIPS at T1	🔺 SGS at T3
		🔺 SGS at T4

- SMG1P2

Conclusions

- STIP-Seq captures 4 layers of information of translation-competent proviruses
- Translation-competent proviruses are not as intact as we thought: PSI defects
- STIP-Seq seems to enrich for clinically relevant proviruses

Acknowledgments

We would like to thank the participants to our study

HIV Cure Research Center

Marion Pardons Laurens Lambrechts Ytse Noppe Wojciech Witkowski **Linos Vandekerckhove**

University of Montréal

Pierre Gantner Nicolas Chomont **University of Washington**

Lennie Chen James Mullins

<u>University of Sydney</u> Sarah Palmer

