

Impact of COVID on HIV care in Belgium in 2020

30 November 2021

For BREACH

Stefaan J. Vandecasteele, MD, PhD Dominique Van Beckhoven, MD, Msc Gilles Darcis, MD, PhD Stephan De Wit, MD, PhD

Content:

- **1. Background: impact of COVID on HIV**
- 2. Situation in Belgium: the Liege paper
- 3. BREACH project: impact of COVID on HIV

Ambiosioni, Lancet HIV, 2021, e294 - 305

1. Impact of COVID on HIV: retention in care

Challenges in care engagement

IDWeek

mimi

Selected viral suppression studies

Setting	Context	Engagement	Viral suppression	
San Francisco ¹	12/2019-2/2020 v 4/2020	\leftrightarrow	Odds of detectable VL 31% higher during COVID	
Boston ²	2019 v 3-4/2020	\uparrow	No difference in viral suppression preCOVID (77%) and during COVID (74%) p 0.209	
Nebraska ³	FY2020 v 3-6/2020	\checkmark	No difference in viral suppression pre and during COVID (both 91%)	
Belgium ⁴	2019 v 2020	\checkmark	Detectable VL 9% preCOVID v 5% during COVID	
AFRICOS⁵	1/2019-3/2020 v early 5/2020-8/2020 v late 9/2020-2/2021	Early \downarrow Late \leftrightarrow	Viral suppression in late COVID: aOR: 3.29; 95% CI: 1.81– 6.00 compared with preCOVID	
Italy ⁶	3-11/2019 v early 3-5/2020 v late 6-11/2020	-	Detectable VL 7% preCOVID decreased to 5.5% early COVID, 1.2% late COVID	
Guatemala ⁷	2019 v 2020	-	No VL data but deaths from OIs 16.6% preCOVID and 27.3% during COVID (p 0.05)	
		1 2 3 4	Spinelli M. AIDS. (2020) 34:2328-2331. ⁵ Dear N. CID. eAOP Apr 27 2021. Mayer K. ID Week 2020 Abstract 541. ⁶ Izzo I. AIDS Res Ther. (2021) 18:31. Fadul N. ID Week 2020 Abstract 112. ⁷ Medina N. Int J ID. (2021) 108:422-427. El Moussaoui M. HIV Res Clin Prac. eAOP Jul 25 2021.	

2. Impact of COVID on HIV: HIV testing

Declines in HIV/STI Testing in US and Europe, 2019 to 2020

Curanovic D, IAS 2021; Simoes D, European Journal of Infectious Diseases 2020

HIV Testing Declined in both Medical Facilities and Community Testing Sites: San Francisco

SF Department of Public Health HIV Epidemiology Annual Report 2020

3. Impact of COVID on HIV: sexual behavior

Trends in sexual behavior during COVID AMPrEP Study (n=136) Several studies report transient declines in casual partners, but same/increase in steady partners MSM in South: 82% reported decreases in casual partners, but fewer w/ steady partners MSM in Amsterdam: anal sex acts decreased w/ casual partners but increased with steady partners (OR 1.26) Shifts in sexual behavior were generally short lived (8 weeks in Amsterdam study) Several studies report ongoing/increasing rates of HIV risk • GBMSM in US: Mean increase of 2.3 sex partners during COVID-19: more common in those reporting substance use and experiencing homelessness MSM in UK: 75% reported sex outside household, triggered by isolation/loneliness (48%), feeling bored (29%) or anxious/stressed (27%)

Pampati S, JAIDS 2021; Jongen VW, JAIDS 2021; Stephenson R, AIDS and Behavior 2021; Hyndman I, BMJ 2021

4. Impact of COVID on HIV: PreP

Trends in PrEP prescriptions and new PrEP users during COVID (2017-2020)

28% decrease in number of new PrEP users during Mar 15–Sep 30

- Observed n=62,211; predicted n=85,806
- RR=0.72 between observed trend (solid line) and predicted trend (dashed line)

• Decreases in new PrEP use seen across multiple geographic areas and race/ethnicity groups – most pronounced among white individuals in the South

Huang A CROI 2021; Tao L, IAS 2021

IDWeek

Content:

- **1. Background: impact of COVID on HIV**
- 2. Situation in Belgium: the Liege paper

3. BREACH project: impact of COVID on HIV

HIV Research & Clinical Practice

search & Clinical Practice

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/yhct21

Impact of the COVID-19 pandemic situation on HIV care in Liège, Belgium

Majdouline El Moussaoui, Nicolas Lambert, Nathalie Maes, Karine Fombellida, Dolores Vaira, Michel Moutschen & Gilles Darcis

To cite this article: Majdouline El Moussaoui, Nicolas Lambert, Nathalie Maes, Karine Fombellida, Dolores Vaira, Michel Moutschen & Gilles Darcis (2021) Impact of the COVID-19 pandemic situation on HIV care in Liège, Belgium, HIV Research & Clinical Practice, 22:3, 63-70, DOI: <u>10.1080/25787489.2021.1948773</u>

El Moussaoui, HIV Research & Clin Pract, 2021, 22, 63-70

1. Impact of COVID on HIV: retention in care

Table 4 Evolution of the total number of outpatient follow-up visits to a specialist in infectious diseases

Medical visits per year (N = 1162 HIV	patients followed in 2019 and in 2020)
---------------------------------------	--

Year	Total number of medical visits	Number of medical visits / patient	Total number of medical visits / month
2019	3088	3 (2; 3)	250 (239; 281)
2020	2548	2 (2; 3)	210 (186; 272)
Comparison, p-value (a)		< 0.0001	0.088
Medical visits per wave (N = 116	2 HIV patients followed in 2019	and in 2020	
	Total number of medical visits/ number of months	n(%) telemedicine	Total number of medical visits/ month
2020, first Wave : Mar-May	347/3 months	47 (13%)	131 (25: 191)
2020, between Waves: Jun-Sept	1026/4 months	34 (3%)	253 (199: 314)
2020, second Wave : Oct-Dec Comparison, p-value ^(b)	631/3 months	82 (13%)	203 (193; 235)
First vs (between and second) Between vs second			0.030

Results are expressed as median (IQR) and ^(a) *p*-value signed rank test for repeated measures or ^(b) Kruskal-Wallis test. Significant *p*-value < 0.05.

- Less consultations/patient
- More patients suppressed (95 versus 91 %)

El Moussaoui, HIV Research & Clin Pract, 2021, 22, 63-70

2. Impact of COVID on HIV: 'quality' in care

Table 3 Delay between the o	diagnosis and the management	No delay in treatment initiation		
New HIV diagnoses per year				
Year	Days between first known test and first visit	Days between first visit and treatment initiation	Days between first known test and treatment initiation	
2019	14 (9; 31)	7 (1; 12)	22 (14; 44)	
2020	16 (12; 30)	5 (0; 12)	28 (17; 37)	
Comparison, p-value	0.39	0.42	0.61	
New HIV diagnoses per wave				
First wave: March-May 2020	16 (13; 29)	1 (0; 8)	20 (16; 34)	
Between the waves: June- September 2020	20 (7; 33)	2 (0; 10)	20 (14; 37)	
Second wave October- December 2020	16 (14; 28)	4 (1; 14)	28 (19; 30)	
Comparison, p-value	0.99	0.60	0.69	

Results are expressed as median (IQR) and p-value Kruskal-Wallis test.

Table 6	Coinfections	and	comorbidities	screening
lable 0	Connections	anu	comorbiunces	Scieening

Slightly decrease in comorbidity screening

Morbidity screening: impact of coronavirus pandemic situation

n(%) patients screening	2019 (N = 1278)	2020 (N = 1292)	p-value
PCR Chlamydia	184 (14%)	280 (22%)	< 0.0001
PCR Gonococci	185 (14%)	281 (22%)	< 0.0001
Serology HCV	781 (61%)	717 (56%)	0.0039
Serology HBV	352 (28%)	626 (49%)	< 0.0001
Serology Syphilis	854 (67%)	783 (61%)	0.0010
Colonoscopy/rectoscopy	51 (4%)	21 (2%)	0.0003
Lipid profile	947 (74%)	868 (67%)	0.0001

El Moussaoui, HIV Research & Clin Pract, 2021, 22, 63-70

Decrease in psychology and sexology consulations

Table 5 Psychology and sexology consultations

Psychology and sexology consultations: impact of coronavirus pandemic situation per year

Year	Number patients followed	Total number Psy/sexo consults	Number Psy/sexo consults/month
2019	1278	858	73 (69; 83)
2020 Comparison, p-value	1292	480	52 (30; 61) 0.0004
Psychology and sexology consultations	: impact of coronavirus pand	emic situation per wa	ve
First Wave: March-May 2020	1292	49	20 (0; 29)
Between Waves: June-September 2020	1292	235	61 (57; 61)
Second Wave : October-December 2020	1292	129	32 (32; 65)
Comparison, p-value			
First vs (between and second)			0.015
Between vs second			0.46

Results are expressed as median (IQR) and p-value Kruskal-Wallis test.

Content:

- **1. Background: impact of COVID on HIV**
- 2. Situation in Belgium: the Liege paper
- 3. BREACH project: impact of COVID on HIV

1. Data source, methods & objectives

Data source: National HIV surveillance data, collected from HRCs and ARL, by Sciensano

Coverage: All HIV diagnoses, all patients with a VL (ARLs) and >80% care data from HRCs

Methods:

Comparison of indicators & trends by

- year (2020 vs previous years)
- month (lock-down periods vs other periods)

Objectives

Identify COVID-19 impact on various aspects of the HIV epidemic and care

<u>1. Impact of the COVID epidemic on the key indicators of HIV care (including the</u> <u>90-90-90 goals):</u>

1. Number of test for HIV: monthly trend & comparison with previous years \checkmark 2. Nr of **new HIV diagnoses**: monthly trend & comparison with previous years 3. Nr of **acute infections** diagnosed: monthly + comparison with previous years \mathbf{V} 4. Number of patients in **medical follow-up**, defined as a blood test for VL, CD4 or medical visits + comparison with previous years $\mathbf{\Lambda}$ 5. Number of **VL per patient** + comparison with previous years 6. Nr of PLWH with measured VL: monthly + comparison with previous years \mathbf{N} 7. Number of **CD4 per patient** + comparison with previous years 8. Number of patients with HIV care interruption (>=365 days without HIV care record): comparison by year $\mathbf{\Lambda}$ 9. Patients mortality adjusted for age × 10. Proportion of patients with an **undetectable viral load** + comparison with previous years 11. Last CD4 value + comparison with previous years $\mathbf{\Lambda}$ **12.Number initiating ART**: monthly + comparison with previous years 13. Time from diagnosis to HIV care entry: monthly + comparison previous years ×

<u>2. Impact of the COVID epidemic on PreP consultation:</u>

- Number of PrEP starters per month (based on PrEP reimbursement data Pharmanet)
- Number of PrEP purchase per month (based on PrEP reimbursement data Pharmanet)

HIV testing

N° of HIV tests : 18 % decrease

56 HIV tests performed per 1000 inhabitants in 2020 (62/1000 in 2017-19)

Source: RIZIV/INAMI

Number of HIV diagnoses, AIDS and deaths per year, 1982-2020 N° of HIV diagnosis : 21 % decrease

Number of HIV diagnoses per month, 2017-2020

dip in diagnosis during first lockdown

Earliness of HIV diagnoses: late diagnoses (<350 CD4/mm3) & acute infection

Yearly number of VL among Belgian patients & of CD4 among HRC patients. 2012-2020

Decrease in the number of VL and CD4/year Year CD4 (all HKC patients) VL (all patients in Beigium) Mean number Mean number % undetect, at Median last VL performed end of year CD4 performed CD4 value per per year * per year year 2012 2.8 73% 3.2 563 3.1 2013 2.7 77% 579 2.6 3.0 2014 81% 599 2.6 3.0 626 2015 84% 2.6 NA 2016 87% 643 2017 2.4 89% 2.5 657 2.3 91% 2.5 2018 675 91% 2019 680 2020 92% 2.1 1.9 682 Preliminary analyses

Increase in the % with undetectable VL

Monthly STI testing, Belgium, 2017-2020

Decrease in STI testing (especially during lockdown)

Vscien**sano**

Reported STI diagnoses (/100 000 inh.), by year and by month, 2017-2020

Decrease in STI diagnosis

Prep and PEP

44. Maandelijks aantal gekochte pillen voor PrEP, 2018-2020

- Increase in N° PrEP users
- Stable N° of pill use
- More on demand use
- \rightarrow Jessika Deblonde on PrEP

Decrease in PrEP and PEP pill use

2. Results: impact COVID on HIV in Belgium

- 1) 18 % \downarrow in the N° HIV tests
- 2) 21 % \downarrow in the N° HIV diagnosis
 - Mainly during the first lockdown
 - With decrease N° late presentation/ acute infections → real decrease in infections
- 3) \downarrow in N° VL and CD4 determinations/year
- 4) \uparrow in the % patients UD VL (92 %)
- 5) \downarrow STI testing and diagnosis
- 6) \downarrow pill use for PrEP and for PEP

Questions ?