

BREACH Symposium 2021

Characterisation of the HIV-1 latent reservoirs

November 30th, 2021

Majdouline El Moussaoui, MD, PhD student

Department of Infectious Diseases and General Internal Medicine, University Hospital of Liège, Belgium

GIGA I3, University of Liège

1st source of residual viremia: HIV Latent Reservoirs

1. PCIP-seq optimisation

Optimise "the Pooled CRISPR Inverse PCR sequencing" to HIV-1

- Comparison with Intact Proviral DNA Assay (IPDA)
- 2. Use PCIP-seq to characterise the HIV cellular reservoirs (CD32 study)

Characterisation of the HIV cellular reservoirs in specific T cell populations :

- CD32+ CD4+ T cells
- Various T cell subsets
- T cells expressing immune checkpoint molecules
- 3. Use PCIP-seq for a longitudinal study on cells

Analyse the evolution of the replication-competent HIV cellular reservoir overtime

1. PCIP-seq optimisation

Optimise the Pooled CRISPR Inverse PCR sequencing (PCIP-seq) to HIV-1

- Comparison with Intact Proviral DNA Assay (IPDA)

Artesi et al., Genome Biology, 2021 Bruner et al., Nature, 2019 Lambrechts et al., Viruses, 2020

Characterisation of the HIV-1 latent reservoirs

2. Use PCIP-seq to characterise the HIV cellular reservoirs (CD32 study)

Characterisation of the HIV cellular reservoirs in specific T cell populations:

- CD32+ CD4+ T cells
- Various T cell subsets
- T cells expressing immune checkpoint molecules

91

3. Use PCIP-seq for a longitudinal study on cells

Analyse the evolution of the proviral landscape overtime

- Taking advantage of very old samples stored during late 90's

Acknowledgments

Infectious diseases department

Gilles Darcis Michel Moutschen Patricia Dellot Nicole Marechal

AIDS Reference Laboratory

Marie-Pierre Hayette Dolores Vaira Fabrice Susin

GIGA

University of Amsterdam

Alexander O. Pasternak and all his team

Thank you for your attention!

melmoussaoui@chuliege.be

1. Pooled CRISPR Inverse PCR sequencing (PCIP-seq) optimisation: sequencing of both

the HIV proviral genome and the associated site of integration

2. Intact Proviral DNA assay (IPDA): separately quantifies intact and defective proviruses

PCIP-seq optimisation

- 1. Extremely low proviral load \rightarrow multiple displacement amplification (MDA)
- 2. High mutation rates \rightarrow design specific guide RNAs for CRISPR-Cas9

Intact Proviral DNA Assay (IPDA)

- Duplexed droplet digital PCR (ddPCR) to distinguish and separately quantify intact proviruses from defective ones
- Evaluate IPDA performance by comparing it with PCIP-seq in our cohort

• Natural HIV-1 polymorphism in prime/probe binding regions \rightarrow IPDA detection failure

Bruner et al., Nature, 2019 Simonetti et al., Microbiology, 2020